污泥干燥机在运行过程中会出现爆炸事故吗?

发布时间:2020-06-01

污泥干燥机在运行过程中会出现爆炸事故吗?

很多人听说了一些关于污泥干燥机在运行过程中的事故,就会担心自己在使用的过程中会出现一些安全事故,特别是爆炸事故。这个我们不要担心,只要我们掌握污泥干化过程中爆炸的原因了解清楚,做好预防措施,基本上是不会出现爆炸事故的。

 

污泥干化过程中爆炸是怎么回事?

在污泥热干化过程中,存在着严重的自燃与粉尘爆炸的危险。污泥在全干状态下(含固率大于80%)一般呈微细颗粒状,粒径较小,同时由于污泥之间、污泥与干燥器之间、污泥与介质之间的摩擦、碰撞,使得干化环境中可能产生大量粒径低于150μm的粉尘。这种高有机质含量的粉尘,在一定的氧气、温度和点燃能量条件下可能发生燃烧和爆炸,即所谓的粉尘爆炸。
 

 污泥粉尘爆炸.png

 

污泥干化事故主要影响因素

通过以上分析论述,污泥的点燃能量很低,而干化工艺本身就是凭借温度进行的,加上污泥干化所涉及的一系列设备,以及污泥在干燥器内本身的流动性,即使在静电、金属碰撞等条件都得到控制的情况下,污泥燃烧所需的点火能量是难以避免的问题。因此,污泥干化工艺中粉尘爆炸的主要影响因素有以下3个方面:粉尘粒径、含湿量、环境温度与压力。

 

粉尘粒径

粉尘颗粒越细越易扩散。粒径小的粉尘,比表面积大,表面能大,所需点燃能量小,所以容易发生粉尘爆炸。当可燃性粉尘粒径大于150μm时,相对安全。

含湿量

采用蒸汽作为填充的惰性气体,可有效地增加污泥干化系统的湿度,同时降低了系统内粉尘的浓度,提高点燃能量,降低氧气含量,是提高干化系统安全性的重要手段。

环境温度与压力

环境温度的升高及干化系统内压力的增大,可使污泥粉尘的点燃能量降低。因此,需对污泥干化系统的环境温度及工作压力进行控制,防止由于环境因素造成的安全事故。

 

污泥干化事故预防措施

污泥是一种具有潜在粉尘爆炸性质的有机物。干化的安全性,涉及整个干化系统。大部分干化工艺具有存储、分离、除尘、过滤、筛分、传输、混合、干燥、供热、称重等设备,这些设备以串联的方式,通过管线、阀、泵等连接,在整个干化工艺生产线上,形成互相影响的复杂系统。干燥器以外的辅助设备存在的风险远高于干燥器本身。因此,污泥干化事故的预防不仅需着重关注工艺本身,而且需从整个系统来分析工艺设备的可靠性、稳定性。此外,污泥干化产品在离开料仓后的存储过程也是较易发生干化事故的方面。

 

1、工艺安全性

工艺安全性的核心问题是“干泥返混”。由于污泥本身的物理特性,污泥在干燥的过程中易产生粘结,从而影响产品干燥的质量和干燥器的效率。为此,部分污泥干化工艺采用“干泥返混”的办法,即通过将部分已干燥的污泥与未经干化的污泥进行混合,以降低污泥的黏性,提高污泥颗粒间的透气性,提高干燥效率。

 

污泥返混在反复冷却加温过程中损失了大量的能量,而且产生安全性问题:

(1)返混过程中的污泥颗粒有的可能循环了一次,有的可能循环了数次,污泥干化至含固率90%以上时,具有短时间难以复水的特点,因此,当干燥污泥返混时,遇到高温,会造成部分干燥污泥颗粒过热,导致粉尘产生。

 

(2)干燥污泥含固率达到90%,造粒过程难以保证产品的密实,在返混过程中将出现吸湿反应,产生大量的粉尘,粉尘与污泥颗粒的混合,将导致更高的氧化速率,增大了粉尘爆炸的危险性。因此,在实际工程中应尽量降低污泥的返混量。

 污泥粉尘爆炸预防.jpg

粉尘爆炸原因分析

2、设备可靠性、稳定性

现在的污泥干化技术都非常重视设备的安全性,并针对性的采取措施保证设备可靠、稳定的运行。

 

在含氧量方面,设备须对系统内氧气含量进行实时监测,间接加热器中填充氮气确保系统内氧气含量小于2%;直接加热器通过气体循环控制氧气含量小于8%;当氧气含量超过10%时,系统自动停机。

 

在颗粒温度的控制房方面,设备须严格控制污泥在干燥器内的停留时间,保持干污泥中适量的水份,以避免污泥过热燃烧。当污泥含固率达到90%时,必须离开干燥器。设有湿污泥料仓的工艺,须控制湿污泥仓内甲烷浓度在1%以下,避免甲烷爆炸事故的发生。

 

产品安全性

干化后污泥产生自燃的事故原因在于氧化。污泥在氧化过程中产生放热反应,如果热量不能及时散发掉,将使污泥的堆积温度升高,反过来又加速污泥的氧化,放出更多的可燃物质及热量,造成污泥的自燃。从氧化到自燃有一个过程,因此,避免堆积的死角和过长的储存期是避免干化污泥自燃的有效途径。对污泥进行造粒,造粒后污泥具有较高的密度和硬度,且可供氧化面积减小,造成污泥自燃的几率降低。

为防止干污泥自然,设备须对干燥后污泥进行冷却,保证干污泥颗粒的温度在40℃以下。

 

最后总结 

污泥干化是目前实现大规模污泥减量和污泥处置的重要措施。而安全性则是研究污泥干化的首要课题。

 

污泥干化系统的设计的时候,不仅要对正常工作状况下的运行条件进行分析,而且需要从非正常工况下,考虑到一个污泥干化系统的稳定性和可靠性,保证污泥干化系统的安全运行。